1,426 research outputs found

    Stateless Two-Stage Multiple Criteria Scheduling in Nuclear Medicine

    Get PDF
    Examination in nuclear medicine exhibits scheduling difficulties due to its intricate clinical issues, such as varied radiopharmaceuticals for different diseases, machine preparation and length of scan, and patients’ and hospital’s criteria and/or limitations. Many scheduling methods exist but are limited for nuclear medicine. In this paper, we present stateless two-stage scheduling to cope with multiple criteria decision making. The first stage mostly deals with patients’ conditions. The second stage concerns more the clinical condition and its correlations with patients’ preference which presents more complicated intertwined configurations. A greedy algorithm is proposed in the second stage to determine the (time slot and patient) pair in linear time. The result shows practical and efficient scheduling for nuclear medicine

    Blind Source Separation of Hemodynamics from Magnetic Resonance Perfusion Brain Images Using Independent Factor Analysis

    Get PDF
    Perfusion magnetic resonance brain imaging induces temporal signal changes on brain tissues, manifesting distinct blood-supply patterns for the profound analysis of cerebral hemodynamics. We employed independent factor analysis to blindly separate such dynamic images into different maps, that is, artery, gray matter, white matter, vein and sinus, and choroid plexus, in conjunction with corresponding signal-time curves. The averaged signal-time curve on the segmented arterial area was further used to calculate the relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), and mean transit time (MTT). The averaged ratios for rCBV, rCBF, and MTT between gray and white matters for normal subjects were congruent with those in the literature

    Extinction Coefficient of Gold Nanostars

    Get PDF
    Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis, and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPRs), which range from 5.7 × 10⁸ to 26.8 × 10⁸ M⁻¹ cm⁻¹. Measured values correlate with those obtained from theoretical models of the NStars using the discrete dipole approximation (DDA), which we use to simulate the extinction spectra of the nanostars. Finally, because NStars are typically used in biological applications, we conjugate DNA and antibodies to the NStars and calculate the footprint of the bound biomolecules.United States. National Institutes of Health (AI100190

    Pressure Dependence of Fragile-to-Strong Transition and a Possible Second Critical Point in Supercooled Confined Water

    Full text link
    By confining water in nano-pores of silica glass, we can bypass the crystallization and study the pressure effect on the dynamical behavior in deeply supercooled state using neutron scattering. We observe a clear evidence of a cusp-like fragile-to-strong (F-S) dynamic transition. Here we show that the transition temperature decreases steadily with an increasing pressure, until it intersects the homogenous nucleation temperature line of bulk water at a pressure of 1600 bar. Above this pressure, it is no longer possible to discern the characteristic feature of the F-S transition. Identification of this end point with the possible second critical point is discussed.Comment: 4 pages, 3 figure

    Rapid Diagnostics for Infectious Disease using Noble Metal Nanoparticles

    Get PDF
    Rapid point-of-care (POC) diagnostic devices are needed for field-forward screening of severe acute systemic febrile illnesses such as dengue, Ebola, chikungunya, and others. Multiplexed rapid lateral flow diagnostics have the potential to distinguish among multiple pathogens, thereby facilitating diagnosis and improving patient care. We present a platform for multiplexed pathogen detection which uses gold or silver nanoparticles conjugated to antibodies to sense the presence of biomarkers for different infectious diseases. We exploit the size-dependent optical properties of Ag NPs to construct a multiplexed paperfluidic lateral flow POC sensor. AgNPs of different sizes were conjugated to antibodies that bind to specific biomarkers. Red AgNPs were conjugated to antibodies that could recognize the glycoprotein for Ebola virus, green AgNPs to those that could recognize nonstructural protein 1 for dengue virus, and orange AgNPs for non structural protein 1 for yellow fever virus. Presence of each of the biomarkers resulted in a different colored band on the test line in the lateral flow test. Thus, we were able to use NP color to distinguish among three pathogens that cause a febrile illness. Because positive test lines can be imaged by eye or a mobile phone camera, the approach is adaptable to low-resource, widely deployable settings. This design requires no external excitation source and permits multiplexed analysis in a single channel, facilitating integration and manufacturing. We will also discuss engineering the nanoparticle physical properties and surface chemistry for improving detection and also optimizing device properties, and expansion of the device to detect other diseases

    Effects of Angelica dahurica

    Get PDF
    The main objective of wound treatments is to restore the functional skin properties and prevent infection. Traditional Chinese medicine provides alternative anti-inflammatory, antimicrobial, and wound healing therapies. Both Angelica dahurica extract (AE) and Rheum officinale extract (RE) possess antimicrobial activity. In this study, AE and RE were applied in wound treatment to investigate their healing effects. Thirty Sprague-Dawley rats with dorsal full-thickness skin excision were divided into normal saline (NS), AE, RE, AE plus RE (ARE), and Biomycin (BM) groups. The treatment and area measurement of wounds were applied daily for 21 days. Wound biopsies and blood samples were obtained for histology examinations and cytokine analysis. Results showed that wound contraction in ARE group was significantly higher than that in NS and BM groups (P 0.05), and plasma TGF-β1 levels were significantly lower than those in the NS group on days 3-4 (P < 0.05). In conclusion, ARE accelerates wound healing during inflammation and proliferation phases

    Improved Breath Phase and Continuous Adventitious Sound Detection in Lung and Tracheal Sound Using Mixed Set Training and Domain Adaptation

    Full text link
    Previously, we established a lung sound database, HF_Lung_V2 and proposed convolutional bidirectional gated recurrent unit (CNN-BiGRU) models with adequate ability for inhalation, exhalation, continuous adventitious sound (CAS), and discontinuous adventitious sound detection in the lung sound. In this study, we proceeded to build a tracheal sound database, HF_Tracheal_V1, containing 11107 of 15-second tracheal sound recordings, 23087 inhalation labels, 16728 exhalation labels, and 6874 CAS labels. The tracheal sound in HF_Tracheal_V1 and the lung sound in HF_Lung_V2 were either combined or used alone to train the CNN-BiGRU models for respective lung and tracheal sound analysis. Different training strategies were investigated and compared: (1) using full training (training from scratch) to train the lung sound models using lung sound alone and train the tracheal sound models using tracheal sound alone, (2) using a mixed set that contains both the lung and tracheal sound to train the models, and (3) using domain adaptation that finetuned the pre-trained lung sound models with the tracheal sound data and vice versa. Results showed that the models trained only by lung sound performed poorly in the tracheal sound analysis and vice versa. However, the mixed set training and domain adaptation can improve the performance of exhalation and CAS detection in the lung sound, and inhalation, exhalation, and CAS detection in the tracheal sound compared to positive controls (lung models trained only by lung sound and vice versa). Especially, a model derived from the mixed set training prevails in the situation of killing two birds with one stone.Comment: To be submitted, 31 pages, 6 figures, 5 table

    Benchmarking of eight recurrent neural network variants for breath phase and adventitious sound detection on a self-developed open-access lung sound database-HF_Lung_V1

    Full text link
    A reliable, remote, and continuous real-time respiratory sound monitor with automated respiratory sound analysis ability is urgently required in many clinical scenarios-such as in monitoring disease progression of coronavirus disease 2019-to replace conventional auscultation with a handheld stethoscope. However, a robust computerized respiratory sound analysis algorithm has not yet been validated in practical applications. In this study, we developed a lung sound database (HF_Lung_V1) comprising 9,765 audio files of lung sounds (duration of 15 s each), 34,095 inhalation labels, 18,349 exhalation labels, 13,883 continuous adventitious sound (CAS) labels (comprising 8,457 wheeze labels, 686 stridor labels, and 4,740 rhonchi labels), and 15,606 discontinuous adventitious sound labels (all crackles). We conducted benchmark tests for long short-term memory (LSTM), gated recurrent unit (GRU), bidirectional LSTM (BiLSTM), bidirectional GRU (BiGRU), convolutional neural network (CNN)-LSTM, CNN-GRU, CNN-BiLSTM, and CNN-BiGRU models for breath phase detection and adventitious sound detection. We also conducted a performance comparison between the LSTM-based and GRU-based models, between unidirectional and bidirectional models, and between models with and without a CNN. The results revealed that these models exhibited adequate performance in lung sound analysis. The GRU-based models outperformed, in terms of F1 scores and areas under the receiver operating characteristic curves, the LSTM-based models in most of the defined tasks. Furthermore, all bidirectional models outperformed their unidirectional counterparts. Finally, the addition of a CNN improved the accuracy of lung sound analysis, especially in the CAS detection tasks.Comment: 48 pages, 8 figures. To be submitte

    Antitumor agents. 271: Total synthesis and evaluation of brazilein and analogs as anti-inflammatory and cytotoxic agents

    Get PDF
    The first total synthesis of the naturally occurring tetracyclic homoisoflavonoid brazilein (1) and 14 new analogs (1a–n) is reported. Target compounds and intermediates were assayed for anti-inflammatory effects on superoxide anion generation and elastase release by human neutrophils in response to fMLP/CB, and for cytotoxic activity against nasopharyngeal (KB), vincristine-resistant nasopharyngeal (KBvin), lung (A549) and prostate (DU-145) human cancer cell lines. The most active compound 1b showed potent effects on superoxide anion generation and elastase release with IC50 values of 1.2 and 1.9 µM, respectively, and was 65 times more potent than phenylmethylsulfonyl fluoride (PMSF), the positive control, in the latter assay. Additionally, 1b exhibited broad spectrum in vitro anticancer activity with IC50 values of 6–11 µM against the four tested cancer cell lines
    corecore